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An experimental study of a magnetohydrodynamic flow in a system of n (n% 5) U-
bends is presented. The bends are electrically coupled via common electrically
conducting walls parallel to the external magnetic field. In the test section the fluid
flows perpendicular–parallel–perpendicular to the magnetic field. The Hartmann
number M varies in the range 6¬10#%M% 2±4¬10$, and the interaction parameter
N in the range 10#%N% 4±3¬10%. The experimental data for the wall electric
potentials and the pressure have been compared with the theoretical asymptotic values
calculated for N(M $/#( 1. This assumption in theory ensures the inertialess nature
of the flow. For n¯ 1 the agreement between the theory and the experiment is good.
With increasing number of bends quantitative (for n¯ 3) and then qualitative (for
n¯ 5) disagreement appears. For the first time in strong-field magnetohydrodynamics
this disagreement has been observed on the Hartmann walls, i.e. walls perpendicular
to the field. The experimental results for the wall potential indicate that for n¯ 5 in
some of the ducts parallel to the field qualitatively different flow patterns are
established than those predicted by the asymptotic inertialess theory. The flow in the
core depends on N, i.e. is of inertial nature. In the whole range of N investigated there
is only a slight tendency of the wall potential to approach theoretical values. This
demonstrates the stability of the new flow pattern and that even such high values of N
as 4±3¬10% are insufficient for the core flow to be inertialess. A strong dependence of
the pressure drop on N has been observed in all the flow configurations investigated.
The dependence of the inertial part of the pressure drop in each bend scales with N−"/$,
as long as N−"/$' 1. This is characteristic of electromagnetic–inertia interaction in the
boundary and internal layers parallel to the field. A linear increase of the pressure drop
with the number of coupled bends has been observed, confirming qualitatively previous
theoretical results. The effects of magnetic field inclination and different flow
distribution between bends have also been studied.

1. Introduction

In the fusion blanket application of magnetohydrodynamics (MHD) (Malang et al.
1988) a liquid metal flows in a very strong magnetic field, so that both the Hartmann
number M¯ aB

!
(σ}(ρν))"/# and the interaction parameter N¯ aσB#

!
}(ρ�

!
) are high, in

the range 10#–10&. The interaction parameter and the square of the Hartmann number
express the ratios of electromagnetic to inertia and viscous forces, respectively. In the
above σ, ν and ρ are the electrical conductivity, kinematic viscosity and density of the
fluid, B

!
is the induction of the uniform applied magnetic field, �

!
is the average fluid
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velocity, and a is a characteristic duct dimension. At such extreme values of parameters
M and N the MHD flows in rectangular ducts are usually modelled with the use of
asymptotic methods for N(M $/#( 1, since direct methods of numerical integration
fail. The assumption N(M $/#( 1 ensures that inertia effects are negligible in the
whole flow region, while viscous effects are confined to thin boundary and internal
layers, where the flow is governed by �iscous–electromagnetic interaction. In the
experiments with straight rectangular ducts in a smoothly varying magnetic field in the
direction of the flow (Reed et al. 1987) a very good agreement with the theoretical
results for the inertialess flow has been achieved. The agreement was good despite the
fact that the assumption N(M $/#, which was very difficult if not impossible to fulfil
in the experiments, did not hold. In fact in these experiments the values of N were
NEM $/# and even N'M $/#. First, experiments with bends in the plane of the field
(Barleon et al. 1993, 1994) also showed quite good agreement with the asymptotic
theory. These facts gave a rise to the expectation that general three-dimensional flows
in strong magnetic fields may be described on the basis of the inertialess flow model
even for N!M $/#.

However, recently Reimann et al. (1993, 1995) and Stieglitz et al. (1996) presented
experimental evidence that in complex elements such as rectangular bends in the plane
of the field both the pressure drop and the flow pattern may be different, sometimes
qualitatively different from the asymptotic ones obtained in the inertialess limit.

Reimann et al. (1993) performed screening experiments with a system of electrically
coupled U-bends and found that the pressure drop strongly depends on the interaction
parameter, showing the importance of inertia effects neglected in the model. Later
Reimann et al. (1995) performed experiments with a single U-bend. They used hot-wire
and electromagnetic probes to measure velocity profiles and potential gradients within
the liquid metal in two sets of measurements. At the relatively low values of N% 150
and M% 460 they discovered unexpected velocity profiles to be discussed in §5. The
tendencies were opposite to those in the model. In particular, the vorticity component
in the magnetic field direction was of the opposite sign.

Stieglitz et al. (1996) presented measurements of the wall potential, pressure and
potential gradient within the liquid metal in a Z-shaped bend. No qualitative difference
with the theory was discovered in the electric potential on the Hartmann walls (walls
with significant normal component of the magnetic field). However, both the pressure
drop and the sidewall (walls parallel to the field) potential showed the dependence on
N as N−"/$, which is characteristic of electromagnetic–inertia interaction in the
boundary and internal layers. This is a completely different type of force balance than
in the asymptotic model discussed above and developed for bend flows by Moon &
Walker (1990), Moon, Hua & Walker (1991), Hua & Walker (1991), Bu$ hler (1993,
1995), Molokov & Bu$ hler (1994, 1995) and Molokov & Stieglitz (1995). This difference
was discussed by Hunt & Leibovich (1967), Hunt & Holroyd (1977), and recently by
Molokov, Bu$ hler & Stieglitz (1995). Measurements of the potential gradient within the
liquid metal showed both quantitative (up to 400%) and qualitative differences with
the theory.

It should be noted that measurements of the potential gradient and the fluid velocity
within the liquid metal in essentially three-dimensional flows may be not precise
because of the well-known negative influence of the probe on the flow pattern (see the
discussion by Stieglitz et al. 1996). For example, Reimann et al. (1995) report a
difference of almost 100% in some readings by the two different measurement
techniques (see above). Therefore, a more convincing confirmation of their results is
necessary.
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Measurement of the wall potential is much more precise, since the probe tips
attached to the outside wall surface produce a negligible influence on the flow. In this
paper the results of such measurements are presented for a system of n electrically
coupled U-bends for n¯ 1, 3 and 5. We show that for n¯ 5 a qualitatively different
wall potential distribution is established in ducts parallel to the magnetic field than that
predicted by the theory. This distribution obtained on the Hartmann walls indirectly
indicates that the flow pattern must also be qualitatively different (see §5). No
significant difference with the theory has been observed for n¯ 1, while for n¯ 3 the
difference is significant but only quantitative.

Another aspect of the flow in a system of bends studied here experimentally is the
electromagnetic flow coupling resulting from circulation of global electric currents. A
comparison between the experiment and the inertialess theory developed previously
(Molokov & Stieglitz 1995) is given. In particular, the effect of increasing the number
of bends on the pressure drop in inertial MHD flows is studied. This question is of
paramount importance for the fusion blanket technology. However, concerning both
the pressure drop and the flow pattern we discuss main tendencies of general interest,
while technical results of importance to fusion blanket designers only are discussed
elsewhere (Stieglitz 1994 and Stieglitz et al. 1994).

2. Formulation

The geometry of the system of bends under consideration is shown in figure 1. It
consists of five bends, which are electrically coupled via electrically conducting
common walls. The externally applied strong uniform magnetic field B is oriented so
that the fluid flows perpendicular–parallel–perpendicular to B in the part of the test
section investigated, the so-called U-bends. To keep to the terminology commonly used
in fusion design, the fluid flows in radial–toroidal–radial U-bends. All ducts have
square cross-sections in each part of the bend. The whole geometry is symmetric with
respect to the midplane of the central duct i¯ 1 (symmetry plane S1, z¯ 0). The part
of the test section under investigation, i.e. radial–toroidal–radial U-bend, is also
symmetric with respect to the plane S2 at y¯ l. Contrary to the analysis performed by
Molokov & Stieglitz (1995) the radial ducts are of finite length, namely l

rad
, and they

are fed by the supplying ducts, which are parallel or almost parallel to the field. Part
of the supplying ducts for y!®4 are turned by an angle of 7°, so that the test section
as a whole is slightly asymmetric with respect to S2. The definition of the other length
scales may be taken from figure 1.

The steady flow of an electrically conducting viscous incompressible fluid in bend i
of the system of bends is governed by the following dimensionless inductionless MHD
equations:

momentum
1

N 9
¥�(i)

¥t
­(�(i)[¡) �(i):¯®¡p(i)­

1

M #

∆�(i)­j (i)¬B, (2.1)

mass ¡[�(i)¯ 0, (2.2)

charge ¡[j(i)¯ 0, (2.3)

and Ohm’s law j(i)¯®¡Φ (i)­�(i)¬B. (2.4)

The velocity �, the magnetic field B, the current density j, the pressure p, the potential
Φ, and time t are normalized by the average fluid velocity �

!
in the whole system of
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F 1. Schematic of the test section. The locations of the measurement positions for pressure
are shown with circles.

bends, B
!
, σ�

!
B

!
, aσ�

!
B#

!
, a�

!
B

!
, and a}�

!
, respectively. The length scale a represents

half the height of the radial ducts in the magnetic field direction; all other length scales
appearing in the problem are normalized by a. The fluid properties are assumed to be
constant. Equations (2.1)–(2.4) are based on the assumption that the induced magnetic
field arising from the electric current flow within the fluid and in the duct walls is
negligibly small, so that the applied magnetic field can be considered as constant.

The boundary condition for the fluid velocity at each wall is the no-slip condition

�(i)r
W

¯ 0. (2.5)

The electric boundary condition at the duct walls facing the environment is the thin-
wall condition

( j[n)(i)¯®c∆τ Φ(i)
W

, (2.6)

see Walker (1981), where Φ(i)
W

is the potential of the duct wall, n(i) is the inward normal
unit vector to the wall, ∆τ is the two-dimensional Laplace operator in the plane of the
wall, c¯ t

W
σ
W

}(aσ) is the wall conductance ratio, t
W

and σ
W

are the thickness and the
electrical conductivity of the wall. The wall conductance ratio c expresses the ratio of
the electrical conductance of the wall to that of the fluid, and is the same for all walls



Magnetohydrodynamic flows in electrically coupled bends 5

of the test section. Condition (2.6) has to be modified at the interior dividing walls
common to ducts i and i­1 to give

( j[n)(i+")­( j[n)(i)¯®c∆τ Φ(i)
W

, (2.7)

see Hua & Picologlou (1991) and Molokov & Stieglitz (1995). Conditions (2.6) and
(2.7) mean that the net current input to the wall from the fluid is balanced by a
tangential current flow in the wall, creating a potential distribution Φ(i)

W
.

Finally, the potential at the fluid–wall interface is continuous, i.e.

Φ(i)
Fluid

r
W

¯Φ(i)r
W

, (2.8)

if no electric contact resistance at the interface exists. Many structural materials, e.g.
stainless steel, have a passivated surface in the form of oxides or alloys arising from the
manufacturing process and therefore have an undefined electrical contact. The contact
resistance is removed before the experiment by the so-called wetting procedure (see
Stieglitz et al. 1996). The effect of the contact resistance on the velocity profiles and the
pressure drop may be dramatic, see Bu$ hler & Molokov (1994).

3. Analysis

A detailed asymptotic analysis of the flow in a system of U-bends with semi-infinite
radial ducts has been performed by Molokov & Stieglitz (1995). Their analysis is valid
for N(M $/#( 1 and c(M−"/#, or for M $/#(N( 1 and c(N−"/$. We summarize
their results here and discuss modifications to their model dictated by the finite length
of the radial ducts in the test section.

At high M viscous effects can be neglected in the momentum balance (2.1) except for
the boundary and internal layers. At high N inertia effects may also be neglected. With
N( 1 and M( 1 the momentum equation reduces to a balance between pressure and
Lorentz forces in the cores of the ducts, the pressure being constant along magnetic
field lines.

The inviscid cores are separated from the walls and from each other by thin viscous
layers. The most important of them are: (i) Hartmann layers at walls normal to the
magnetic field; (ii) parallel layers at walls parallel to the magnetic field (the so-called
side layers) and at abrupt changes of the geometry in the magnetic field direction
(internal layers, such as those at x¯ 0). The thickness of the Hartmann layers is δ

H
C

M−". The thickness of the parallel layers depends on the type of force balance there.
For N(M $/# the inertial effects are negligible, and the flow in the parallel layers is
determined by the viscous–electromagnetic interaction, while the thickness of the layer
is δ

P
CM−"/#. For N'M $/# inertial effects become significant; these layers become

thicker with δ
P

CN−"/$, which is determined by electromagnetic–inertia interaction
(see Hunt & Leibovich 1967; Hunt & Holroyd 1977; Molokov et al. 1995). In the
parallel layers high-velocity jets may appear, as shown by Hunt (1965) (see also Walker
1981). These jets may carry a significant part of the volume flux, if not all, and thus
play an important role in the overall flow balance.

Simultaneously with the partial differential equations for the boundary layers and
the core the partial differential equations for the electric potential on the walls are
solved, which result from the boundary conditions (2.6) and (2.7). The potential
distribution on the wall is determined by the electric current leaving the fluid domain
and entering the wall. If the electrical conductance of the walls is much higher than that
of the neighbouring parallel layers (c( δ

P
), most of the core current flows across the

parallel layer into the wall without significant changes. The current in the parallel
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layers may then be neglected and the differential equation for the wall potential is
directly matched to the core flow. The assumption c( δ

P
has been used in all the

theoretical investigations cited in §1, as well as in the present study. In this case the
nature of the parallel layer, whether it is governed by viscous–electromagnetic or
electromagnetic–inertia interaction, is unimportant. The parallel layers then play a
passive role, and the flow in the layers may be reconstructed, if necessary, after the
solution of the problem for the core pressure and the wall potential has been obtained.
The latter problem involves two-dimensional equations only (see Molokov & Stieglitz
1995).

Owing to these assumptions of inductionless and inertialess flow, the calculation can
be restricted to one half of the U-bend (y! l ). The effect of the inclination of the
supplying ducts for y!®4 is expected to be small in the major part of the U-bend.
Therefore, at y¯ l the following symmetry conditions are used:

p(i)(y¯ l )¯ 0; Φ (i)(y¯ l )¯ 0. (3.1)

Fully developed flow conditions cannot be applied in the radial ducts, as in the
calculations of Molokov & Stieglitz (1995), since these ducts are of finite length and are
fed by the supplying ducts. Instead, the computational domain is extended up to x¯
l
rad

with appropriate symmetry conditions between x¯ 0 and x¯ l
rad

, as has been
done by Stieglitz et al. (1996) for a Z-bend. For the potentials these conditions are

Φ (i)(l
rad

, y, z)¯Φ (i)(0, 2a®y, z). (3.2)

Owing to symmetry with respect to the plane S1, computational effort can be reduced
by introducing the conditions

¥p(")

¥z
(z¯ 0)¯Φ (")(z¯ 0)¯ 0 at z¯ 0, (3.3)

and restricting attention to the region z& 0.
The test section consists of five ducts, which are filled in turn in order to investigate

flow in one, then three, and finally five bends. Where flow in less than five bends is
investigated the outer ducts remain empty. Their walls, however, serve as an additional
path for the electric currents induced in the filled ducts. This current path has been
taken into account by solving the Laplace equation

∆τ Φ(i)
W

¯ 0 (3.4)

for the potentials on all walls of non-filled ducts.
The iterative numerical scheme to solve the problem for the wall potentials and the

core pressures, together with the boundary and symmetry conditions discussed here,
is analogous to that of Molokov & Stieglitz (1995). The resolution of the grid is 16
points per unit length and the iteration process in the calculations is stopped when the
relative error in all flow quantities falls below 0±5%.

The main features of the flow in the toroidal ducts are the following. In the cores of
these ducts the flow velocity is

�(i)
tor,core

¯ (1®y}l)y#¬¡
xz

Φ(i)
W

(y¯ 0) for ®2!x! 0, (3.5)

i.e. the y component of the core velocity vanishes. This implies that the flow in the y-
direction is carried in the parallel layers. However, the other two components of the
core velocity are non-zero. Thus, the fluid flows in the planes y¯ constant following
the isolines of the potential Φ(i)

W
(y¯ 0). The projection of the flow pattern on the (x,
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z)-plane for n¯ 5 is shown in figure 2, which demonstrates how flow redistribution
between different parallel layers occurs through the core. This redistribution is more
intensive at y¯ 0, decreasing linearly to zero at the symmetry plane y¯ l, according
to (3.5).

For y! 2 there is a volume flux from the right-hand parallel layers of the radial
ducts in each bend into the toroidal ducts, which persists over some distance in the
toroidal ducts, as shown in figure 2 (dotted lines). Simultaneously, this flow turns in the
y-direction to be carried in the parallel layers in the toroidal ducts. For y" 2 the
tendency reverses so that the projection of the flow direction in the layer on the (x, z)-
plane becomes opposite to that in figure 2.

Molokov & Stieglitz (1995) showed that the jets at the two sides of the dividing walls
are equal in magnitude but opposite in direction. This means that in the left-hand-side
layers in ducts 2 and 3 negative jets appear whenever jets are positive on the opposite
side of the dividing walls. For equal flow rates Q(i)¯ constant this happens in the
whole U-bend, i.e. in both radial and toroidal ducts.

The other important flow properties in the toroidal duct are that the core currents
flow only in the magnetic field direction and that there is no pressure drop in the
toroidal ducts to the main order. Concerning the pressure drop, the main difference
with the flow considered by Molokov & Stieglitz (1995) is that for n& 3 the flow turns
out to be not fully developed in the whole test section, as will be discussed in §5.

4. Experimental set-up

The experiments in the multi-channel U-bend test section have been carried out in
the MEKKA-facility of the Forschungszentrum Karlsruhe in a super-conducting
magnet with a maximum field strength of 3±6 Tesla and a gap of 400 mm. The
homogeneous axial field strength, defined as the region in which the magnetic field
deviates by less than 10%, is 450 mm long. The liquid metal used in the experiment is
the eutectic sodium–potassium alloy Na##K(). The thermophysical data of the fluid
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may be taken from O’Donell, Papanicolaou & Reed (1989). A detailed description of
the experimental facility and the magnet is given by Barleon, Casal & Lenhart (1991),
see also Stieglitz et al. (1996).

The test section consists of five neighbouring ducts, in which each part of the U-bend
has a square cross-section. The characteristic length is a¯ 12±5 mm, which provides
the wall conductance ratio of c¯ 0±038. The walls are made of 1 mm thick stainless
steel plates. The supplying ducts are formed by ducts aligned with the magnetic field.
At the inlet, however, after four values of the characteristic length the ducts are inclined
by an angle of 7°, which allows the test section in the (x, y)-plane to be inclined by an
angle Θ of up to 7° within the restricted length of the homogeneous field, see figure 1.
An inclination of β¯ 9° in the (x, z)-plane has also been investigated. The measurement
of the potentials on the duct surface has been carried out using 225 spring loaded
needles mounted on a fibreglass matrix which is attached to the test section. The
needles are in electrical contact with the duct walls. The probes are arranged in 17
measurement lines in three different planes from ®5% z% 5 in the following way:
plane y¯ 0 at x¯®1, 0, 2, 4, 6 ; plane x¯ 0 at y¯ 3, 4, 6, 9, 15; plane x¯®2 at y¯
0, 1, 2, 4, 6, 9, 15. All electric wall potentials have been measured as potential difference
of a needle against the reference potential.

In order to measure pressure differences in each duct five stainless steel tubes of
2 mm inner diameter have been welded on the duct centre line. The exact location of
the taps is illustrated in figure 1.

The measurements of the wall potentials as well as the pressure difference
measurements have been performed using the same procedure and the same facility as
in the Z-bend experiment by Stieglitz et al. (1996). The correction which has to be made
in the pressure measurements in strongly three-dimensional MHD-flows is documented
in detail in that paper.

The experimentally obtained dimensionless data plotted in the figures below
represent values which have an absolute error of less than 8% using the Gaussian error
propagation law. Plotted values for which an error exceeds this margin are indicated
by error bars.

5. Equal flow rates (the mode Q(i)¯ constant)

First, we present experimental results for n¯ 1, 3 and 5 for equal flow rates in all
the bends (the mode Q(i)¯ constant) and for Θ¯β¯ 0°. Variations from these
conditions will be discussed in §§5.4, 6. According to the asymptotic model the
complete solution is known once the potentials on the duct walls and the pressure are
determined. Thus, presentation of the experimental data is restricted to these quantities
at some characteristic positions, which are marked by thick lines in the graphs. Similar
tendencies have been observed at the other positions.

5.1. Single bend (n¯ 1)

Figure 3 shows theoretical and experimental values of the wall potential for a fixed
Hartmann number and for varying N in different planes (x, y)¯ constant. Pairs of
ducts 2 and 3 are empty. As has been mentioned in §3, the walls of the empty ducts
serve as additional electrical current paths. All the subgraphs show that the potential
on the walls of the empty ducts is far from constant. Thus, quite significant amount of
the electric current flows within the walls, affecting the pressure drop and the flow
distribution in the filled duct.
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As the flow approaches the junction from x¯ 6 to x¯ 0 the value of the induced
potential decreases continuously. The agreement between the calculated and the
measured data there is rather good. The influence of the interaction parameter on the
wall potentials is insignificant. In the immediate vicinity of the bend region, especially
at the positions x¯®1 and y¯ 0, slight discrepancies between the theory and the
experiment occur. At y¯ 0, z¯ 1 near the sidewall of duct i¯ 1 a dependence of the
wall potential on the interaction parameter is observed. As the flow passes the bend
region the potential decreases further with increasing y-coordinate, and the agreement
between the theory and the experiment becomes very good again. Similar conclusions
have been made by Stieglitz et al. (1996), who investigated flow in a Z-bend.

5.2. Three bends (n¯ 3)

5.2.1. Wall potential measurements

The results for the wall potentials for different N and M are shown in figures 4 and
5. In figure 4 the wall potentials for different Hartmann numbers at a constant value
of N¯ 1034 are shown for n¯ 3, Q(i)¯ constant. At a distance of more than two
values of the characteristic length away from the junction no influence of M is observed
either on the Hartmann wall y¯ 0, nor on the wall x¯®2. The recorded data
practically coincide with the calculated ones. At the outer corner indicated as hatched
area in figure 4, however, a certain dependence of the potential on M is found. With
increasing M the experimental data have a tendency to approach those predicted by the
asymptotic model. Nevertheless, the measured data in the middle of duct i¯ 2 (at z¯
2) are significantly lower than the asymptotic ones not only at the outer corner but also
at the junction x¯ 0. At that position for z¯ 2 the potential does not have the
tendency to approach theoretical values for increasing M at all. In contrast, at the duct
walls at z¯ 1 and z¯ 3 the calculated values are almost exactly confirmed by the
measurement. A plot of the potential data at the position x¯®1 versus M−"/#, is
shown in figure 6(a). Unfortunately, no definite conclusion can be made on the type
of dependence on M of this quantity owing to the lack of data. However, the fact that
there is a dependence of the potential on M on the Hartmann wall is shown for the first
time for such high values of N and M, and is therefore surprising. In a single bend flow
(§5.1) such a variation at the Hartmann wall has not been observed.

The potential distribution at several characteristic positions for the same flow
configuration at a fixed Hartmann number of M¯ 2431 and different values of N is
presented in figure 5. Again, at two values of the characteristic length away from the
junction, i.e. for x" 2 and for y" 2, the measured potentials show no influence of N
and, moreover, agree nearly exactly with the asymptotic values for an inertialess flow.

The results shown in figures 4 and 5 outline that the flow in the radial-duct cores of
bends i¯ 1 and i¯ 2 at a few values of the characteristic length away from the bend
is inviscid and inertialess in the parameter range investigated. But in the immediate
vicinity of the bend a dependence of the potentials on N is observed. Figure 6(b) shows
the wall potentials at the position x¯®1, y¯ 0 versus N−"/$. Again, no definite
conclusion can be made about the dependence on N, although one might try to fit a
straight line to approximate the measured values. The question whether the potential
at this point varies linearly with N−"/$ remains open.

The disagreement in the potentials between the model and the experiment at z¯ 2
in the toroidal duct i¯ 2 (e.g. at x¯®1) for all experimental values of M and N leads
to a different distribution of the core velocity in this duct. The lower z-derivative of the
wall potential in the region 1% z% 2 compared to the model leads to a lower core
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F4. Wall potential distribution forn¯ 3;Q(i) ¯ constant ;N¯ 1034; c¯ 0±038andΘ¯β¯ 0°.
D, M¯ 2431; *, M¯ 1910; ^, M¯ 1211; V, M¯ 634; ——, calculation as N,MU¢.

velocity in the x-direction, whereas the higher derivative in the domain 2% z% 3
indicates a higher core velocity than predicted by the model (cf. (3.5)). Of course, (3.5)
is applicable as long as r j¬y# r' 1, which is fulfilled in the theory but might not be
fulfilled in the experiment. The electric potential at the dividing wall z¯ 3 (but not at
z¯ 1) coincides with the calculated one in the whole investigated parameter range. The
potential distribution on the walls of the unfilled ducts agrees rather well in all domains
with the values predicted by the asymptotic model and is independent of both the
Hartmann number and the interaction parameter.
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5.2.2. Pressure difference measurements

The question of the pressure drop is very important. In order to separate different
effects, the total pressure drop ∆p

total
between any two points along the duct can be

split into several parts as follows:

∆p
total

¯∆p
#D

­∆p
$D,C

­∆p
$D,N

(N )­∆p
$D,M

(M ). (5.1)

The first part, the so-called two-dimensional pressure drop ∆p
#D

may be calculated
using the asymptotic solution for the flow in a system of electrically coupled straight
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∆p
total,i±#–i±&

∆p
#D

­∆p
$D,C

∆p
$D,N

(N ) ∆p
$D,M

(M )

Duct i¯ 1 0±57 3±85¬N−!
±
$#& 1±2¬M−!

±
%(&

Ducts i¯ 2 0±45 2±34¬N−!
±
$#! 1±2¬M−!

±
%($

T 1. Contributions of different parts of the pressure drop obtained with a fitting procedure
for n¯ 3 with Q(i) ¯ constant ; c¯ 0±038 and Θ¯β¯ 0°

ducts obtained by Molokov (1993). ∆p
#D

has to be taken into account in the radial
ducts only, because in the toroidal ducts it vanishes to the main order (Molokov &
Bu$ hler 1994; Molokov & Stieglitz 1995). The other terms in (5.1) represent
contributions to the so-called three-dimensional pressure drop ∆p

$D
, which expresses

the excess pressure drop required for reshaping the velocity profile near the junction.
In the asymptotic model in which only Lorentz and pressure forces act on the fluid a
three-dimensional pressure drop ∆p

$D,C
caused by Joulean dissipation of three-

dimensional electric currents appears and can be calculated. The last two terms in (5.1)
represent the contribution of parallel layers with electromagnetic–inertia and
viscous–electromagnetic interaction. They can be determined up to now only
experimentally. One should keep in mind that the attempt to express the pressure drop
as formulated in (5.1) neglects viscous–inertia interaction, which is present in a real
MHD flow.

A least-square fitting procedure for the measured data for both ducts i¯ 1 and
i¯ 2 yields the results shown in table 1. The constants in column 2 for both i¯ 1 and
i¯ 2 differ by about 10% from the values calculated with the model. The exponents for
N and M are nearly ®1}3 for N and ®1}2 for M, in complete agreement with the
order-of-magnitude analysis by Hunt and Holroyd (1977) for bend flows. Similar
exponents have been obtained in the Z-bend experiment by Stieglitz et al. (1996). The
significance of this result for bend flows and for general three-dimensional
magnetohydrodynamic flows has been discussed by Molokov et al. (1995) and Stieglitz
et al. (1996).

In figure 7 the dimensionless pressure drop in a three-channel flow in the radial duct
i¯ 1 between positions 1.1 and 1.2 is shown for M¯ 2386 as a function of N−"/$. Both
calculations and measurements indicate that the flow is far from fully developed in the
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whole test section. The data for ∆p
#D

, calculated with the code developed by Molokov
(1993), are 16% lower than the calculated pressure drop for the real U-bend geometry
in the region between 1.1 and 1.2, where the fully developed flow was expected. A
comparison of the experimental data for N" 10% with the value obtained by the
asymptotic three-dimensional model demonstrates that with proper modelling quite a
good agreement is achieved. However, for interaction parameters N! 10% a clear
dependence of the pressure drop on inertia is observed.

In figure 8 the pressure drops between positions i.2 and i.3 (open symbols) and
between positions i.3 and i.5 (filled symbols) are plotted both for duct i¯ 1 and the
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ducts i¯ 2 at different values of N in order to investigate the influence of the bend
orientation (radialU toroidal flow or toroidalU radial flow in two 90°-bends
comprising the U-bend). In both ducts 1 and 2 a difference between these two flow
configurations has been found throughout the parameter range investigated. As in the
Z-bend experiment by Stieglitz et al. (1996) the pressure drop in a toroidalU radial
bend is higher than in a radialU toroidal bend. The reason for this difference arises from
the development of separation areas beyond the corners. In a toroidalU radial flow the
separation area may develop near the top Hartmann wall at x" 0, y" 22. Compared
to the opposite flow direction it will be much shorter but it can be thicker. The induced
potential in this separation area is lower. Therefore, the Ohmic resistance of the zone
in the toroidalU radial flow is smaller, which leads to a higher current and thus to a
higher pressure drop. For high N (N" 10%) the pressure drop for both flow directions
is nearly the same within the measurement accuracy. As M and N tend to infinity both
in duct i¯ 1 and the ducts i¯ 2 the pressure drops tend to the values calculated by the
asymptotic model.

Also, a dependence of the pressure drop on the Hartmann number is observed in the
bend experiments : at the same value of the interaction parameter the dimensionless
pressure drop increases with decreasing Hartmann number. Plotting the ratio of the
total pressure drop in duct i¯ 1 and ducts i¯ 2 between positions i.2 and i.5 as a
function of the interaction parameter and for different Hartmann numbers, one
observes that this ratio is almost constant, see figure 9. The ratio depends neither on
N nor on M and corresponds nearly to the value predicted by the asymptotic theory.
Owing to the good agreement it can be concluded that the flow distribution between
the core and the parallel layers is predicted correctly by the inertialess model and
remains the same for all N and M in the parameter range investigated. This means that
although the inertial parallel layers become thicker with decreasing N than the
inertialess ones, the amount of flow carried by the jets in these layers remains the same
or almost the same.

5.3 Fi�e bends (n¯ 5)

5.3.1. Wall potential measurements

The potential distribution in a five-channel flow for different values of the interaction
parameter is shown in figure 10. Analogously to the three-channel flow the agreement
between the experiment and the asymptotic model at a distance of more than two
values of the characteristic length away from the bend area is very good.

However, in the vicinity of the bend a drastic qualitative and quantitative
disagreement between the model and the experiment appears, which is most apparent
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F 11. (a) Measured isopotential distribution at y¯ 0, x! 0 for n¯ 5, Q(i) ¯ constant,
N¯ 2350; M¯ 2431; c¯ 0±038, and Θ¯β¯ 0°. The stars indicate the measurement points. (b)
Sketch of flow pattern in the experiment by Reimann et al. (1995) : jets bursting into the core (dotted
lines) ; recirculating flow pattern in the core (solid lines).

in ducts i¯ 2 and i¯ 3. The measured potentials there are much lower than the
calculated ones. The smaller potential gradient in the region 1% z% 4 for x% 2 may
indicate that the core velocity there is smaller than that predicted by the model. But the
potential gradient near the outer wall at z& 4 suggests a higher velocity. A significant
influence of M and N on the potentials is found only in the toroidal part of bends
i¯ 3 for y% 2.

In the following discussion we assume that by virtue of (3.5) the isolines of the
electric potential at y¯ 0, x! 0 reflect the streamlines in the cores of the toroidal ducts
not only in the theory, but also in the experiments. We recall that (3.5) is applicable as
long as r j¬y# r' 1.
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In figure 11(a) the isopotential contour plot of the measured values in the toroidal
ducts at y¯ 0 is shown. A comparison with the calculated isopotential distribution
shown in figure 2 demonstrates the differences in the flow pattern establishing in an
inertial MHD bend flow. In duct i¯ 1 (z% 1) the calculated potential distribution is
similar to that found in the experiment. In ducts i¯ 2 and i¯ 3 the isopotential lines
indicate that more fluid is pushed towards the outer sidewalls at z¯ 3 and z¯ 5 than
calculated. Furthermore, the main feature depicted in the isolines in the ducts i¯ 3 is
the appearance of a closed streamline on the (x, z)-plane.

A similar flow pattern in a single U-bend has been obtained experimentally by
Reimann et al. (1995) in highly inertial flow conditions (N% 150, M% 460). In these
experiments hot-wire anemometers and potential probes were inserted into the liquid
metal. Although it is known that these probes affect the flow itself (see e.g. the
discussion by Stieglitz et al. 1996), the results for the wall potential presented here
confirm that, at least qualitatively, the results of Reimann et al. are correct.

The projection of the flow pattern on the (x, z)-plane in the experiments by Reimann
et al. (1995) is sketched in figure 11(b), which shows that the y-component of vorticity
has the opposite sign to that predicted theoretically (cf. figure 2, i¯ 1). This pattern
extends into the major part of the toroidal duct and is claimed to be virtually two-
dimensional along the magnetic field lines. This contrasts with the inertialess flow,
where both x- and z-components of velocity vanish at the symmetry plane y¯ l. The
explanation provided by Reimann et al. (1995) is the following. The jets at the sidewalls
z¯³1 are characterized by a high momentum flux ρ�#. They penetrate into the
toroidal duct and meet at the symmetry plane z¯ 0. In the inertialess flow the jets are
turned in the y-direction by the electromagnetic forces, so that the jets decelerate
smoothly towards z¯ 0. In the inertial flow for sufficiently low values of N, the
momentum of the jets is not destroyed completely. When they meet at the symmetry
plane z¯ 0, they burst in the x-direction into the core. As a result of this, the
z-component of the gradient of the potential of the wall y¯ 0 changes the sign at
z¯ 0, and closed isopotential lines appear as shown in figure 11(b). This distribution
of potential drives a recirculatory flow in the core, provided the y-component of the core
velocity is still zero. It should be noted that the latter is an assumption only, and the
question of two-dimensionality of this flow pattern remains open.

A similar mechanism applies to the present flow, figure 11(a). In duct i¯ 1 the jets
at the sidewalls are very weak (in theory they carry less than 1% of the total volume
flux, see Molokov & Stieglitz 1995). They are much weaker than in a single bend, as
in the experiments of Reimann et al. The reason for their weakness is that the amount
of flow carried by a parallel layer at a sidewall is determined by the magnitude of
current flowing in the plane of this wall (Molokov & Stieglitz 1995). In a single bend
(experiments by Reimann et al.) all the fluid current enters the wall z¯ 1. In a multi-
channel configuration most of the current induced in duct 1 crosses the wall z¯ 1 and
enters duct 2, see figure 2. Only excess current flows in the wall in the ®x-direction,
leading to weak jets at z¯³1 that are unable to reverse potential gradient at z¯ 0 in
the toroidal core.

In duct 2 the jet momentum at the sidewall z¯ 3 is higher than in duct 1, but still
not sufficient to significantly affect the flow in the core.

In duct 3 a very strong jet enters the toroidal duct at the wall z¯ 5. Owing to its high
momentum it reverses potential gradient at the wall z¯ 3, and produces a vortex
pattern in the core of duct 3. As the number of bends increases this effect is expected
to be more and more pronounced.
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∆p
total,i±#–i±&

∆p
#D

­∆p
$D,C

∆p
$D,N

(N ) ∆p
$D,M

(M )

Duct i¯ 1 1±33 4±97¬N−!
±
$$ 1±16¬M−!

±
&!(

Ducts i¯ 2 1±26 3±90¬N−!
±
$$ 1±30¬M−!

±
%*&

Ducts i¯ 3 0±88 2±00¬N−!
±
$$ 1±00¬M−!

±
%*&

T 2. Contributions of different parts of the pressure drop obtained with a fitting procedure
for n¯ 5 with Q(i) ¯ constant ; c¯ 0±038 and Θ¯β¯ 0°

5.3.2. Pressure difference measurements

The pressure drop between i.2 and i.5 in a five-channel flow with identical flow rates
in each duct is shown in figure 12 as a function of N−"/$ for different Hartmann
numbers. For high N the measured pressure drop in the outer duct (i¯ 3) tends to the
value calculated by the model. On extrapolating the pressure drop in the inner ducts
(i¯ 1 and i¯ 2) as NU¢ the calculated inertialess limit is not exactly reached. The
reason for the small deviation between the asymptotic model and the measurement
may be the inclined inlet, which is not taken into account in the modelling. A similar
fitting procedure as carried out in §5.2.2 leads to the results shown in table 2. Here also
the exponents obtained for N and M are nearly ®1}3 and ®1}2, respectively.

For engineering purposes the dependence of the pressure drop on the number of
electrically coupled ducts is of major importance. In figure 13 the pressure drop in the
central duct (i¯ 1) is plotted versus the number of electrically coupled bends for
different values of the interaction parameter. By comparing the multi-channel results
of calculation and measurement with the numerical results for a single U-bend flow of
equivalent width and equivalent volumetric flow rate, it is seen that the pressure drops
in the multi-channel system are significantly higher. The reason for this is that the
dividing walls at z¯ 1 and z¯ 3 provide additional paths for the electric current, thus
increasing its magnitude (Molokov & Stieglitz 1995).
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n¯ 3 not taking into account the unfilled neighbouring ducts ;p, single bend (n¯ 1) with equivalent
aspect ratio and equivalent volumetric flow rate.

Both in the measurements and the calculation the pressure drop increases in the
central duct linearly with the number of electrically coupled bends. An upper limit of
the pressure drop for increasing number of bends is not expected, as discussed by
Molokov & Stieglitz (1995).

With increasing number of coupled ducts the inertial part of the pressure drop
∆p

$D,N
also increases, which can be seen by the diverging lines for constant N in figure

13 as N decreases ; it can reach the order of magnitude of the total inertialess pressure
drop ∆p

total
®∆p

$D,N
calculated by the model.

5.4. Influence of small B-field inclinations with respect to the U-bend

For the design of heat transfer units it is of major importance to know how small
magnetic field deviations from the perfectly aligned case influence the flow
characteristics.

Because of the loss of symmetry by inclining the geometry with respect to B, the code
developed by Molokov & Stieglitz (1995) for Θ¯β¯ 0° could not be applied to the
inclined cases investigated. In the experimental results presented the differences to the
aligned case are outlined.

5.4.1. Inclination Θ¯ 7°, β¯ 0°

For an inclination of Θ1 0° the formerly aligned walls in the plane x¯ 0 and
x¯®2 become the Hartmann walls. The induced potential in the radial ducts varies to
the first order as cosΘ (cf. Moon & Walker 1990), whereas in the toroidal ducts it is
proportional to sinΘ. The symmetry of the flow with respect to the plane z¯ 0 remains
intact, but the symmetry about the plane y¯ l is lost. Thus, one 90°-bend becomes a
forward bend and the other one a backward bend, figure 14(b), according to the
terminology of Moon & Walker (1990), and Moon et al. (1991). A detailed description
of the flow patterns and pressure distributions establishing in forward and backward
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n¯ 5, Q(i) ¯ constant ; c¯ 0±038; M¯ 2417; Θ¯ 0° and β¯ 9° as a function of N−"/$. The filled
symbols indicate ducts with z! 0, the open symbols mark ducts with z" 0.

bends may be found in Moon & Walker (1990), Moon et al. (1991) and Stieglitz et al.
(1996).

Because of the limited size of the magnet, only an inclination of Θ¯ 7° has been
investigated. Owing to the small inclination angle the induced potential changes only
slightly in both the radial and the toroidal ducts. Variations of wall potentials with N
and M are found to be almost the same as for the aligned case (Θ¯ 0°).

Figure 14(a) shows the pressure drop in the forward and backward bends of duct
i¯ 1 for n¯ 3 with Q(i)¯ constant as a function of N−"/$. Similarly to the experimental
results for a flow in the Z-bend presented by Stieglitz et al. (1996), the pressure drop
in a backward bend is higher than in a forward bend. The results reveal further that
in both cases the inertial part of the pressure drop scales with N−"/$. The influence of
inertia on the pressure drop is stronger in the backward bend than the forward bend,
which is documented in a higher slope of the fitted straight line.

In figure 14(c) the pressure drop in duct i¯ 1 between positions 1.2 and 1.5 of the
same flow is compared with the measured values for the inclination Θ¯ 0°. For the
inclined configuration a higher pressure drop is found than for the aligned case (Θ¯
0°). Moreover, the inertial part of the pressure drop increases more rapidly with
decreasing N in the inclined case than in the aligned case. However, in both
configurations it scales with N−"/$.

5.4.2. Inclination β¯ 9°, Θ¯ 0°

If the U-bend is inclined in the (y, z)-plane by an angle β, the flow loses its symmetry
with respect to both planes z¯ 0 and y¯ l. The sidewalls of the radial ducts as well
as the sidewalls of the toroidal duct become the Hartmann walls.

Owing to the loss of symmetry with respect to the plane z¯ 0 the potential
distribution in the ducts z" 0 is different than in the ducts z! 0. In figure 15 the
isopotential distribution in the plane y¯ 0 of a five-channel flow with β¯ 9° is shown.
As the flow approaches the junction at x¯ 0 the asymmetry of the potentials with
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F 17. Comparison of the pressure drop in bend i¯ 1 between the positions 1±2 and 1±5 for
n¯ 5, Q(i) ¯ constant ; c¯ 0±038 and ME 2400 as a function of N−"/$. ^, Θ¯β¯ 0° ; V, Θ¯ 7°,
β¯ 0° ; *, Θ¯ 0°, β¯ 9°.

respect to z¯ 0 becomes stronger. The most significant differences in the wall potential
compared to the case β¯Θ¯ 0° are found in the outer ducts i¯ 3 between x¯ 0 and
x¯®2. The asymmetry in the potential distribution leads to changed current paths
compared to the case β¯Θ¯ 0°, and therefore to uneven pressure drops in the
individual ducts of the bends y! l. In the bend y" l this uneven pressure distribution
is reversed, so that if an inertialess flow is assumed, both effects should cancel.

In figure 16 the pressure drop in ducts i¯ 2 and i¯ 3 between positions i.2 and i.5
for n¯ 5 is shown as a function of N−"/$. As N tends to infinity, i.e. N−"/$U 0, the
extrapolations of the measured pressure drop lines nearly coincide for ducts i¯ 2 as
well as for ducts i¯ 3. However, for N" 5¬10% the differences in the pressure drop
between the ducts z! 0 and z" 0 are evident, which increase as N−"/$ increases.

Figure 17 shows the pressure drop between 1±2 and 1±5 in the central duct i¯ 1 for
n¯ 5 for the three investigated field inclination angles (i) Θ¯β¯ 0°, (ii) Θ¯ 7°, β¯
0°, and (iii) β¯ 9°, Θ¯ 0°. The lowest pressure drop appears in the perfectly aligned
case. However, this figure demonstrates that small field inclinations do not lead to a
drastic pressure drop increase; the latter does not exceed 10% in the investigated
parameter range.

6. The mode ∆p(i) constant

Another important flow mode, which we designate ∆p(i)¯ constant, occurs when
the pressure drop in each sub-channel i between positions i.2 and i.5 is kept identical
by adjusting the flow rates in each duct in an appropriate way. Some differences
between the modes Q(i)¯ constant and ∆p(i)¯ constant exist regarding both the flow
distribution and the pressure drop.

Consider the flow in a three-channel bend (n¯ 3) with ∆p(i)¯ constant. In contrast
to the mode Q(i)¯ constant, the flow distribution between the bends becomes non-
equal. The flow rate in the central duct i¯ 1 decreases, while that in ducts i¯ 2
increases (Molokov & Stieglitz 1995; Molokov 1993). The experiments show, however,
that the ratio of the flow rates Q(#) and Q(") is 1±58, and remains virtually the same
throughout the parameter range investigated (M¯ 6±2¬10#–2±3¬10$, N¯
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constant ; c¯ 0±038; Θ¯β¯ 0°. D, M¯ 2363; *, M¯ 1810; ^, M¯ 1215; V, M¯ 607, ——,
calculation as M, NU¢.

1±1¬10#–2±6¬10%) (figure 18). It coincides with the calculated value for the inertialess
flow. An important implication of this result is that the jets in the layers governed by
the electromagnetic–inertia interaction carry the same volume flux as their inertialess
counterparts (see also §5.2.2).

In contrast to the flow rates, the pressure drop ∆p(i) exhibits a significant dependence
on N as N−"/$ (figure 19). As N−"/$U 0, the extrapolation of the experimental data
reaches nearly the value predicted by the asymptotic model.

A comparison between the multi-channel U-bend flow in the mode Q(i)¯ constant
with that in the mode ∆p(i)¯ constant and with a single-bend flow (theoretical result)
of the equivalent width and equivalent mean velocity is shown in figure 20, which
demonstrates that the highest pressure drop is obtained for the mode Q(i)¯ constant
for all values of M and N.
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F 21. Pressure drop ∆p(i) between positions i±2 and i±5 as a function of the number of
electrically coupled bends for different N and for ∆p(i) ¯ constant, c¯ 0±038; M¯ 2402 and Θ¯
β¯ 0°. D, N¯ 23458; *, N¯ 4861; ^, N¯ 958;V, Calculation as M, NU¢ ;U, calculation for
n¯ 3, in which the non-filled neighbouring ducts are not taken into account ; p, single duct with
equivalent aspect ratio and equivalent volumetric flow rate.

In figure 21 the pressure drop between positions i.2 and i.5 is shown as a function
of the number of electrically coupled ducts for different N in the mode ∆p(i)¯
constant. Similarly to the mode Q(i)¯ constant the pressure drop increases linearly
with the number of coupled bends; the slope of the lines, however, is lower.

The results for the wall potentials are qualitatively the same as for the mode Q(i)¯
constant ; therefore, we do not discuss these results in more detail.

7. Conclusions

The experimental data for the pressure and the wall potentials show that in
electrically coupled U-bends significant deviations between the inertialess asymptotic
flow model and the measured data may occur. These deviations are not new in MHD
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(see e.g. the discussion by Holroyd 1980 and references therein). What is surprising is
that they exist in very strong magnetic fields, which must have an impact on further
development of strong-field magnetohydrodynamics.

In a single U-bend the agreement between the theory, valid for high M and very high
N, and the experiment regarding the surface potentials is quite good. A weak
dependence of the wall potential on N is found only in the immediate vicinity of the
bends.

As the number of electrically coupled ducts increases to 3 and then to 5 a good
agreement between the measurement and the model in the wall potentials is also found
in the radial and the toroidal ducts except for the bend region. There first quantitative
(for n¯ 3) and then qualitative (for n¯ 5) differences occur. The results for the wall
potential provide strong evidence that in this region a completely different flow pattern
is established compared to the one predicted by the asymptotic model. The potential
measurements showed that in the five-channel configuration a recirculating flow
appears directly in the bend region. In this region a weak dependence of the wall
potential on M and N is found. Both dependencies indicate that a non-negligible
current flow is carried by viscous and inertial boundary layers, modifying the current
pattern and thus having a feedback on the pressure drop. With increasing Hartmann
number and interaction parameter the measured data tend towards the theoretical
values everywhere except for the bend region.

In both modes ∆p(i)¯ constant and Q(i)¯ constant an increasing number of bends
leads to a linear increase of the pressure drop in the central duct (i¯ 1). Moreover, the
inertial part of the pressure drop grows with n. This linear increase of pressure drop in
the central duct, which is amplified by the inertial effects, may be critical to the
feasibility of multi-channel heat transfer units in fusion blanket applications, if an
inadequate electrical separation is used or the insulation resistance fails due to
irradiation or corrosion. Generally, the pressure drop for the mode most desirable in
heat transfer units, namely Q(i)¯ constant, is higher than for the mode ∆p(i)¯
constant.

The inertial part of the pressure drop in each flow configuration (∆p(i)¯ constant ;
Q(i)¯ constant) is proportional to N−"/$. This scaling law is independent of the number
of electrically coupled ducts and holds for each duct within the parameter range
investigated. Moreover, the same dependence has been discovered in the Z-bend
experiment (Stieglitz et al. 1996). The N−"/$-variation of the pressure drop has been
predicted for general three-dimensional flows in rectangular ducts by Hunt & Holroyd
(1977). Now there is sufficient experimental evidence to conclude that their prediction
was correct, so that in a very wide range of parameter variation the flow is governed
by electromagnetic–inertia interaction in the layers parallel to the magnetic field. This
balance of forces is different from the viscous–electromagnetic balance in inertialess
flows, and the pressure differences measured in the U-bend for each flow configuration
show that even for NE 5¬10% and ME 2±4¬10$ the flow is far from being inertialess
in the bend region. Therefore, the next stage in understanding of three-dimensional
MHD flows in complex geometries can be achieved by developing a theory of nonlinear
electromagnetic–inertia interaction.

This work has been carried out as part of Mr Stieglitz’s PhD research at the
Forschungszentrum Karlsruhe. There, this work has been performed in the framework
of the Nuclear fusion project of the Forschungszentrum Karlsruhe and is supported by
the European Union within the European Fusion Technology Program. The authors
are grateful to Dr L. Barleon, Professor Dr -Ing, U. Mu$ ller, Dr J. Reimann, Dr L.
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Bu$ hler and Mr K.-J. Mack from the Forschungszentrum Karlsruhe for their help in
planning and performing the experiments and many hours of constructive discussions
interpreting the experimental results.
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